
Early bird with tall, sickle-shaped beak reveals hidden diversity during the Age of Dinosaurs

A Cretaceous-age, crow-sized bird from Madagascar would have sliced its way through the air wielding a large, blade-like beak and offers important insight on the evolution of face and beak shape in the Mesozoic forerunners of modern birds. An international team of researchers led by Ƶ Heritage College of Osteopathic Medicine professor Dr. Patrick O’Connor announced the discovery today in the journal Nature.
Birds have played a pivotal role in shaping our understanding of biological evolution. As long ago as the mid-19th Century, Charles Darwin’s keen observations on the diversity of beak shape in Galapagos finches influenced his treatise on evolution through natural selection. This fossil bird discovery adds a new twist on the evolution of skulls and beaks in birds and their close relatives, showing that evolution can work through different developmental pathways to achieve similar head shapes in very distantly related animals.
The new bird is named Falcatakely, a combination of Latin and Malagasy words inspired by the small size and the sickle-shaped beak, the latter representing a completely novel face shape in Mesozoic birds. The species is known from a single well-preserved, nearly complete skull, one that was buried in a muddy debris flow around 68 million years ago. Bird skeletons are rare in the fossil record because of their lightweight bones and small size. Bird skulls are an even rarer find. Falcatakely is the second Cretaceous bird species discovered in Madagascar by the National Science Foundation-funded team.
The delicate specimen remains partially embedded in rock due to the complex array of lightly built bones that make up the skull. Although quite small, with an estimated skull length of only 8.5 cm (~ 3 inches), the exquisite preservation reveals many important details. As one example, a complex series of grooves on the bones making up the side of the face indicate that the animal hosted an expansive keratinous covering, or beak, in life.
“As the face began to emerge from the rock, we knew that it was something very special, if not entirely unique,” notes Patrick O’Connor, professor of anatomy and neuroscience at Ƶ and lead author on the study. “Mesozoic birds with such high, long faces are completely unknown, with Falcatakely providing a great opportunity to reconsider ideas around head and beak evolution in the lineage leading to mo